113 Class Problems: Characteristic and Ring Extension

1. (a) Give and example of a characteristic zero field which is not \mathbb{Q}, \mathbb{R} or \mathbb{C}.
(b) Give an example of a ring R and two element $a, b \in R \backslash\left\{1_{R}\right\}$ such that $a \neq b$ and $\operatorname{ord}(a) \neq \operatorname{ord}(b)$.
(c) If R is an integral domain and $I \subset R$ is an ideal such that R / I is an integral domain, is it necessarily true that $\operatorname{Char}(R)=\operatorname{Char}(R / I)$?
(d) If F is a finite field and $\operatorname{Char}(F)=p$, prove that $|F|=p^{n}$

Solutions:
a) $\mathbb{Q}(x):=\operatorname{Frac}(\mathbb{Q}[x])$
b) $[2],[3] \in \mathbb{Z} / 4 \mathbb{Z}$
c) $N_{0} \operatorname{dan}(\mathbb{Z})=0 . \operatorname{Char}(\mathbb{Z} / p \mathbb{Z})=p$
d) $\quad C \operatorname{hou}(F)=p \Rightarrow \operatorname{ord}(a)=p \quad \forall \quad a \neq O_{k}$ $\Rightarrow(F,+) \cong \mathbb{Z} / p \mathbb{Z}^{\times \ldots \times \mathbb{C l}_{p} \mathbb{Z}}$ $\Rightarrow|F|=P^{n}$
2. Determine all units in $\mathbb{Z}[i]$.

Solutions:
$\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\} \Rightarrow|\alpha| \geqslant 1 \quad \forall \alpha \in \mathbb{Z} C i]$
$\alpha \in \mathbb{Z}[i]^{+} \Leftrightarrow 3 \beta \in \mathbb{Z}[i]$ sud h that $\alpha \beta=1$

$$
\begin{aligned}
& \Rightarrow|\alpha| \cdot|\beta|=1 \Rightarrow|\alpha|=1 \Rightarrow \alpha=1,-1, i,-i \\
& \Rightarrow \mathbb{Z}[i]=\{1,-1, i,-i\}
\end{aligned}
$$

3. (a) Prove that $\mathbb{Q}[i]=\mathbb{Q}(i)$
(b) Prove that $\mathbb{Q}[\sqrt{2}+\sqrt{3}]=\mathbb{Q}[\sqrt{2}, \sqrt{3}]$

Solutions:
a)

$$
a, b, c, d \in \mathbb{Q}
$$

$$
\begin{aligned}
& \frac{a+b i}{c+d i}=(a+b i)\left(\frac{c}{c^{2}+d^{2}}-\frac{d}{c^{2}+d^{2}}\right) i \in \mathbb{Q}[i] \\
& \Rightarrow \mathbb{Q}(i] \subset \mathbb{Q}[i] .
\end{aligned}
$$

$Q[i] \subset Q(i)$ trivially $\Rightarrow Q(i)=Q[i]$
b) $Q[\sqrt{2}+\sqrt{3}] \subset \mathbb{Q}[\sqrt{2}, \sqrt{3}]$ Givially

$$
\begin{aligned}
& (\sqrt{2}+\sqrt{3})^{2}=5+2 \sqrt{6} \Rightarrow(\sqrt{2}+\sqrt{3})^{3}=11 \sqrt{2}+9 \sqrt{3} \\
& \Rightarrow \sqrt{2}=\frac{(\sqrt{2}+\sqrt{3})^{3}-9(\sqrt{2}+\sqrt{3})}{2} \in \mathbb{Q}[\sqrt{2}+\sqrt{3}] \\
& \sqrt{3}=\frac{(\sqrt{2}+\sqrt{3})^{3}-11(\sqrt{2}+\sqrt{3})}{-2} \in \mathbb{Q}[\sqrt{2}+\sqrt{3}] \\
& \Rightarrow Q[\sqrt{2}, \sqrt{3}] \subset Q[\sqrt{2}+\sqrt{3}]
\end{aligned}
$$

